Radical Cation and Dication of Fluorene Fully Annelated with Bicyclo[2.2.2]octene Units: Importance of the Quinoidal Resonance Structure in the Cationic Fluorene

LETTERS 2002 Vol. 4, No. 23 4117-4120

ORGANIC

Tohru Nishinaga, Ryota Inoue, Akira Matsuura, and Koichi Komatsu*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

komatsu@scl.kyoto-u.ac.jp

Received September 3, 2002

ABSTRACT

Fluorene 1 fully annelated with bicyclo[2.2.2]octene units was newly synthesized and oxidized to stable cationic species. The structure of radical cation salt 1^{+} SbCl₆⁻ was determined by X-ray crystallography, while the first fluorene dication 1^{2+} was characterized by ¹H and ¹³C NMR at -80 °C. Combined with the results of theoretical calculations, an important contribution of a quinoidal structure to the resonance hybrid was demonstrated in both 1^{+} and 1^{2+} .

Fluorene is regarded not only as a dibenzo derivative of cyclopentadiene but also as a derivative of biphenyl whose conformation is planarized by a methano bridge connecting the ortho carbons of the two phenyl rings. From such a viewpoint, a number of derivatives of poly(2,7-fluorene)s have been synthesized, and their application to electronic devices has been tested.¹ Through these studies, the electrical conductivity of the electrochemically hole-doped poly(2,7-fluorene)s ($10^{-4} - 10^{-5}$ S/cm)² was found to be considerably lower than that of the electrochemically hole-doped poly-(*p*-phenylene) (10^2 S/cm).³ The reason for such a difference in conductivity is still not clear because of the complexity of the conduction mechanism. As an important factor in the conduction mechanism, a possible structural change from a benzenoid to a quinoidal structure upon hole-doping was

implied in the cases of biphenyl⁴ and poly(p-phenylene)⁵ on the basis of the combined studies of vibrational spectra and theoretical calculations. However, to the best of our knowledge, neither the X-ray crystallographic study of the radicalcation salt nor the NMR observation of the dication of biphenyl derivatives has been reported due to the intrinsic instability of these cationic species.⁶ Furthermore, the occurrence of such a structural change from benzenoid to quinoidal form in the cationic states has not been investigated for fluorene as a planarized model of biphenyl.

In our previous studies, the annelation of cyclic π -conjugated systems with bicyclo[2.2.2]octene (abbreviated as BCO) units⁷ has been shown to be quite effective for

⁽¹⁾ For a review, see: Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867–2873.

⁽²⁾ Waltman, R. J.; Bargon, J. J. Electroanal. Chem. 1985, 194, 49–62.
(3) Tabata, M.; Satoh, M.; Kaneto, K.; Yoshino, K. J. Phys. Soc. Jpn. 1986, 55, 1305–1310.

⁽⁴⁾ Furuya, K.; Torii, H.; Furukawa, Y.; Tasumi, M. J. Mol. Struct. (THEOCHEM) 1998, 424, 225-235.

⁽⁵⁾ Cuff, L.; Cui, C.; Kertesz, M. K. J. Am. Chem. Soc. 1994, 116, 9269–9274.

⁽⁶⁾ In some polymethoxy derivatives, stable radical cations were generated but were not isolated: Grant, B.; Clecak, N. J.; Oxsen, M.; Jaffe, A.; Keller, G. S. J. Org. Chem. **1980**, 45, 702–705.

⁽⁷⁾ Komatsu, K. Bull. Chem. Soc. Jpn. 2001, 74, 407-419.

stabilization of their radical cations⁸ and dications.⁹ One of the advantages of the structural modification by annelation with alkyl sustituents such as BCO units is that the intrinsic electronic properties of a cationic π -system can be examined without significant perturbation of the π -electron systems. In the present paper, we describe the first X-ray structural study of a fluorene radical-cation salt and the first NMR observation of the fluorene dication using a derivative **1** fully annelated with BCO units.

For the synthesis of fluorene 1, bromobenzene 3 was converted to diphenylmethane 4, as shown in Scheme 1:

then, after dibromination, the dilithiation of dibromide **5** and subsequent intramolecular oxidative coupling with CuCl₂ was employed successfully. Fluorene **1** is a novel 1,2,3,4,5,6,7,8octa-substituted derivative, and the π -system of **1** was anticipated to be twisted due to the steric repulsion of the substituents at the 4- and 5-positions as observed in other octa-substituted derivatives.^{10,11} In fact, the X-ray crystallography of **1**¹² demonstrated that the π -system of fluorene 1 was twisted with a dihedral angle of 12° between the mean planes of the two benzene rings.

The redox properties of **1** were examined by cyclic voltammetry in CH₂Cl₂ at room temperature, which exhibited a reversible first oxidation wave ($E_{1/2} = +0.56$ V vs Fc/Fc⁺) and a quasi-reversible second oxidation wave ($E_{pa} = +0.88$ V). The first oxidation potential of **1** is remarkably lower than the oxidation potential of parent fluorene measured in acetonitrile ($E_{pa} = +1.28$ V vs Fc/Fc⁺).¹³ This is apparently due to the elevated HOMO level caused by inductive and $\sigma - \pi$ conjugative effects of annelation with BCO units.^{7–9} Also, the enhanced stability of the radical cation **1**^{•+} is clearly demonstrated by the reversibility of the first oxidation wave.

When chemical one-electron oxidation of **1** was conducted with 1.5 equiv of SbCl₅ in CH₂Cl₂, the yellow solution of **1** immediately turned to a green solution that showed a broad single-line ESR signal (g = 2.003) persistent at room temperature (Figure 1a), indicating the generation of a stable

Figure 1. (a) Observed and (b) calculated ESR spectra for $1^{\cdot+}$, (c) calculated ESR spectrum for 6^{\cdot} , and selected spin densities by B3LYP/6-31G(d) for (d) $1^{\cdot+}$ and (e) 6^{\cdot} .

radical species. As concerns the stability of a fluorene radical cation, it has been reported that the proton at the 9-position is prone to be released to give the neutral fluorenyl radical.¹³ If such deprotonation takes place for $1^{\cdot+}$, a two-line ESR signal due to the coupling with a single proton at the 9-position of **6** should be observed, as shown in Figure 1c.¹⁴

^{(8) (}a) Wakamiya, A.; Nishinaga, T.; Komatsu, K. *Chem. Commun.* **2002**, 1192–1193. (b) Nishinaga, T.; Inoue, R.; Matsuura, A.; Komatsu, K. *Org. Lett.* **2002**, *4*, 1435–1438. (c) Matsuura, A.; Nishinaga, T.; Komatsu, K. *J. Am. Chem. Soc.* **2000**, *122*, 10007–10016. (d) Nishinaga, T.; Wakamiya, A.; Komatsu, K. *Tetrahedron Lett.* **1999**, *40*, 4375–4378. (e) Nishinaga, T.; Komatsu, K.; Sugita, N.; Lindner, H. J.; Richter, J. J. Am. Chem. Soc. **1993**, *115*, 11642–11643.

 ^{(9) (}a) Nishinaga, T.; Wakamiya, A.; Komatsu, K. Chem. Commun. 1999, 777–778. (b) Nishinaga, T.; Komatsu, K.; Sugita, N. J. Chem. Soc., Chem. Commun. 1994, 2319–2320.

⁽¹⁰⁾ Tong, L.; Lau, H.; Ho, D. M.; Pascal R. A., Jr. J. Am. Chem. Soc. 1998, 120, 6000-6006.

⁽¹¹⁾ Marks, V.; Gottlieb, H. E.; Melman, A.; Byk, G.; Cohen, S.; Biali, S. E. J. Org. Chem. 2001, 66, 6711-6718.

⁽¹²⁾ Crystal data for 1: $C_{37}H_{42}$, triclinic; space group *P*-1; *a* =10.3419-(10) Å, *b* = 22.206(2) Å, *c* = 12.4509(16) Å, α = 90.042(3)°, β = 114.478-(2)°, γ = 89.959(2)°, *V* = 2602.4(5) Å³, *Z* = 4. The final *R* values and GOF were R_1 = 0.0802, w R_2 = 0.1704 (*I* > 2*s*(*I*)), and GOF = 1.211.

⁽¹³⁾ Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867–2872.

⁽¹⁴⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,

Table 1.	Observed and Calculated Bond Lengths $(\text{\AA})^a$ of 1, 1 ^{•+} , and 1 ²⁺												
compd	method	C1-C2	C2-C3	C3-C4	C4-C4a	C4a-C9a	C1-C9a	C4a-C4b	C9–C9a	C2-C10			
1	X-ray ^a calcd ^b	1.409(3) 1.409	1.393(3) 1.397	1.414(3) 1.417	1.404(3) 1.408	1.415(3) 1.421	1.378(3) 1.386	1.499(5) 1.495	1.500(3) 1.509	1.499(3) 1.515			
1• +	X-ray ^a calcd ^b	1.419(3) 1.425	1.406(3) 1.412	1.409(3) 1.403	1.417(3) 1.433	1.443(3) 1.445	1.377(3) 1.373	1.449(3) 1.447	1.486(3) 1.505	1.498(2) 1.503			
1 ²⁺	$calcd^b$	1.447	1.426	1.394	1.458	1.472	1.361	1.407	1.502	1.481			

^{*a*} Averaged values are shown. Estimated standard deviations of mean values given in parentheses are calculated from the following equation: $\sigma(l) = (\Sigma(1/\sigma_i^2))^{-1/2}$. ^{*b*} B3LYP/6-31G(d).

Totally different from such an expectation, a single-line signal was observed, with the peak-to-peak width in good agreement with that for the calculated signal for 1^{++} (Figure 1b).¹⁴

Hence, the observed ESR signal should be assigned to the fluorene radical cation 1^{+} , although no hyperfine coupling could be observed.

The radical cation salt $1^{++}SbCl_6^-$ was precipitated as a green solid when the one-electron oxidation was conducted with 1.5 equiv of $SbCl_5$ in a CS_2 solution of 1. A single crystal was grown by very slow diffusion of hexane into a solution of $1^{++}SbCl_6^-$ in CH_2Cl_2 , and X-ray crystallography¹⁵ was conducted. The obtained molecular structure is shown in Figure 2, and the averaged bond lengths are given in Table

Figure 2. ORTEP drawings showing (a) $1^{\star+}$ $\rm SbCl_6^-$ and (b) the side view of the $1^{\star+}$ moiety.

1 together with those for neutral 1 and its dication 1^{2+} . In the X-ray structure of $1^{\bullet+}$ SbCl₆⁻, the π -system of $1^{\bullet+}$ was also found to be twisted with a dihedral angle of 17° between the mean planes of the two six-membered rings. The twisting angle is larger than that of neutral 1 due to the enhanced

(15) Crystal data for 1^{++} SbCl₆⁻⁺(CH₂Cl₂)₂: C₃₉H₄₆Cl₁₀Sb, orthorhombic; space group *P*2(1)2(1)2(1); *a* =10.5029(8) Å, *b* = 19.6289(15) Å, *c* = 20.4634(15) Å, *V* = 4218.7(6) Å³, *Z* = 4. The final *R* values and GOF were *R*₁ = 0.0392, w*R*₂ = 0.0942 (*I* > 2*s*(*I*)), and GOF = 1.106. steric repulsion between the bridgehead protons in radical cation $1^{\bullet+}$ caused by the shortening of the C4a–C4b bond upon one-electron oxidation of 1 (1.499 Å) to $1^{\bullet+}$ (1.449 Å).

This change of the bond length can be qualitatively explained on the basis of the shape of HOMO in neutral $1.^{8c}$ As shown in Figure 3, the nature of the bond C4a–C4b

Figure 3. HOMO of 1 calculated by B3LYP/6-31G(d).

(1.499(5) Å in 1) is strongly antibonding in the HOMO of neutral 1. This antibonding character is weakened upon removal of one electron from the HOMO, causing the shortening to 1.449(3) Å in 1^{+} . The tendency in the changes in the other $C(sp^2)-C(sp^2)$ bond lengths can be interpreted in a similar way. Upon one-electron oxidation, the bonds C3-C4 and C1-C9a that are antibonding in the HOMO become slightly shortened, and conversely the bonds C1-C2, C2-C3, C4-C4a, and C4a-C9a that are bonding in the HOMO become elongated, as shown in Table 1. Concerning the $C(sp^2)-C(sp^3)$ bond length, the C9–C9a and C2-C10 bonds were found to become slightly shortened upon going from **1** to **1**^{•+}: from 1.500(3) to 1.486(3) Å for C9–C9a and from 1.499(3) to 1.498(2) Å for C2–C10. This bond shortening might be taken as evidence for the presence of the $\sigma - \pi$ conjugation (hyperconjugation) between the electron-deficient 2p orbital of the π -system and the C-H or C-C σ -bonds.¹⁶

The observed changes in bond length upon one-electron oxidation, described above, are well reproduced by theoretical calculations (B3LYP/6-31G(d)),¹⁴ proving the reliability of these calculations. The calculation on 1^{++} also indicated that the spin density is mainly localized on C2 and C7 (0.265), supporting the substantial contribution of the resonance

I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽¹⁶⁾ For the more detailed discussion, see ref 8c.

structure $\mathbf{A} \leftrightarrow \mathbf{B}$ (* = •) for $\mathbf{1}^{\bullet+}$.¹⁷ Accordingly, it would be reasonable to conclude that the quinoidal resonance structure involving the $\sigma-\pi$ conjugation is quite important in the enhanced stability in the radical cation salt $\mathbf{1}^{\bullet+}$ SbCl₆⁻.

When fluorene **1** was reacted with an excess (28 equiv) of SbCl₅ in CD₂Cl₂ at -80 °C, a purple-colored solution was obtained that was ESR-silent and exhibited the ¹H and ¹³C NMR spectra shown in Figure 4. It is to be noted that

Figure 4. (a) ¹H NMR and (b) ¹³C NMR spectra for 1^{2+} .

the NMR signals for the sp² carbons are considerably downfield shifted, and this spectrum is most reasonably assigned to the dication 1^{2+} on the basis of the comparison of the observed and calculated (GIAO/HF/6-31G(d)//B3LYP/ 6-31G(d)) chemical shifts shown in Table 2. Also shown

Table 2. Observed and Calculated^{*a*} ¹³C NMR Chemical Shifts and Charge Densities^{*b*} for sp² Carbons of 1^{2+}

		1									
	C1	C2	C3	C4	C4a	C9a					
δ (obsd)/ppm	148.0	202.7	154.9	174.0	159.2	163.3					
δ (calcd)/ppm	140.3	221.5	148.9	181.5	159.1	159.3					
calcd charge	0.089	0.158	0.069	0.135	0.029	0.062					
^a GIAO/HF/6-31G(d)//B3LYP/6-31G(d). ^b B3LYP/6-31G(d).											

are the values of the calculated Mulliken charge. This dication was stable only at -80 °C in CD₂Cl₂, and when the temperature was raised to -60 °C, it underwent gradual decomposition. Diarylmethanes are known to react with SbCl₅, causing ready deprotonation at the benzyl position to give diarylmethyl cations.¹⁸ In the case of fluorene **1**, such deprotonation did not take place due to probably unfavorable antiaromatic instability of the fluorenyl cation.¹⁹

The signal for C2 is particularly downfield shifted in agreement with the calculated positive charge (+0.158) residing on this carbon. This fact, combined with the calculated results on the structure of dication 1^{2+} , that is, definite shortening of bonds C1–C9a, C3–C4, and C4a–C4b and elongation of bonds C1–C2, C2–C3, C4–C4a, and C4a–C9a (Table 1), clearly indicates that a quinoidal structure such as **A** (= **B**) (* = +) is greatly contributing also to the resonance hybrid of the dication 1^{2+} .

In summary, we succeeded in the first X-ray structural study of the radical cation salt of fluorene derivative 1^{+} SbCl₆⁻ and also the first NMR observation of fluorene dication 1^{2+} , taking advantage of a structural modification with BCO units. From the experimental observations and theoretical calculations of 1^{++} and 1^{2+} , it was concluded that the quinoidal resonance structure is greatly contributing in these cationic fluorenes as calculated for cationic biphenyl.⁴ Such a quinoidal structure is also supposed to be contributing in hole-doped poly(2,7-fluorene)s. Thus, the rather low electrical conductivity observed for poly(2,7-fluorene)s² might be attributed not to the electronic structure of the hole-doped poly(2,7-fluorene)s but to other factors such as rather poor intermolecular interaction.

Acknowledgment. This work was supported by the Grant-in-Aid for COE Research on Elements Science (No. 12CE2005) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Detailed experimental procedures and CIF data of 1 and 1^{+} SbCl₆⁻·(CH₂Cl₂)₂. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026841N

⁽¹⁷⁾ In comparison, the spin density on C1 is -0.051; C3, -0.056; C4, 0.100; C4a, 0.124; C9a, 0.095.

⁽¹⁸⁾ Holmes, J.; Pettit, R. J. Org. Chem. 1963, 28, 1695-1696.

⁽¹⁹⁾ Allen, A. D.; Tidwell, T. T. Chem. Rev. 2001, 101, 1333-1348.